
6.829 Final Project: A comparison of bit rate selection algorithms

Colleen Josephson
cjoseph@mit.edu

Pavel Panchekha
pavpan@mit.edu

May 2013

Abstract

We compare the performance SampleRate and Min-
strel, two popular bit rate selection algorithms that
have widespread real-world usage. We use a trace-
based approach to avoid kernel programming and
improve reproducibility and allow analysis. We test
both algorithms in multiple real-world scenarios, in-
cluding scenarios with mobile clients and noisy en-
vironments, to highlight differences between the two.
We also introduce improvements to the Minstrel algo-
rithm that allow for significant gains in throughput.

1 Introduction

One of the key ways that wireless networks differ
from wired is that wireless networks have varying link
rates. Link conditions vary with time due to interfer-
ence from other devices, changing network geometry,
and mobile clients. An optimal rate at one time may
be different from the optimal rate just 30 seconds ear-
lier. A good bit rate selection algorithm has to detect
and adapt to these conditions. If the chosen bit rate
is too slow, then the throughput will be unnecessar-
ily low; if the rate is too high, failures will be very
frequent and throughput will again suffer.

The wireless 802.11 standard includes a variety of
different bit rates to account for a range of possi-
ble network speeds. Later standard versions intro-
duce more bit rates; we focus on bit rates available
in 802.11b and 802.11g, since 802.11n networks and
hardware were not available for study. Table 1 lists
the bit rates available in the wireless networks stud-
ied. The job of a bit rate selection protocol is to
choose a bit rate, from among the available rates,
for each packet transmission. Due to the variability
and non-determinism of packet transmission, this is
a challenging task.

There are three main classes of bit rate selection
protocols: frame-based, SNR-based, and cross-layer
protocols. Frame-based protocols measure the frac-
tion of successfully received packets. SNR protocols

Throughput Transmission Modulation
1 Mbps dsss bpsk
2 Mbps dsss qpsk

5.5 Mbps dsss cck
11 Mbps dsss cck
6 Mbps ofdm bpsk
9 Mbps ofdm bpsk

12 Mbps ofdm qpsk
18 Mbps ofdm qpsk
24 Mbps ofdm qam-16
36 Mbps ofdm qam-16
48 Mbps ofdm qam-64
54 Mbps ofdm qam-64

Table 1: Bit rates available in 802.11b and 802.11g.
The first block, of four bit rates, contains bit rates
introduced in 802.11b, while the last eight bit rates
were introduced in 802.11g.

make decisions based on the estimated Signal to Noise
ratio. Cross-layer protocols use SoftPHY data from
the physical layer to make better estimates of bit rate
properties. The most commonly implemented proto-
cols on today’s networks are frame based; SNR proto-
cols perform poorly [1] and cross-layer protocols are
hard to deploy due to their violation the standard
network layering abstraction. Due to their ubiquity,
we analyze frame-based protocols.

The two most popular frame-based protocols are
SampleRate and Minstrel. Both were implemented
in the MadWifi drivers for Linux wireless, and today
Minstrel is the default bit rate selection algorithm
for all wireless drivers on Linux. We use a trace-
based approach to analyze the performance of these
two algorithms. We also created a modified version
of Minstrel that provides significant throughput gains
over the vanilla Minstrel implementation.

We provide a high-level overview of SampleRate
and Minstrel in Sections 2 and 3. Then we discuss
our testing methodology in Section 4 and analyze the
results in Section 5. Finally we introduce our mod-
ifications to the Minstrel algorithm in Section 6 and

1



analyze the performance of our improvements.

2 SampleRate

SampleRate, first introduced in [1], is a bit rate selec-
tion algorithm which maintains estimates of average
transmission time for each potential bit rate. To keep
these estimates up to date, SampleRate periodically
sends a packet at a randomly-selected bit rate, and
uses the success or failure of this packet to update
the average transmission time of that bit rate. Sam-
pleRate also abandons a bit rate after four successive
failures at that rate. All information about packets
is maintained with a 10-second sliding window.

SampleRate has three main functions:
ApplyRate(), which returns a the bit rate to
send a packet at, ProcessFeedback(), which up-
dates the statistics for a bit rate after an attempted
packet send, and RemoveStaleResults(), which
removes the effect of packets older than 10 seconds.

3 Minstrel

Minstrel, developed specifically for the Linux kernel,
attempts to improve upon SampleRate to make it
better suited for noisy or dynamic environments. Un-
like SampleRate, Minstrel tracks raw probabilities of
successful transmission for each bit rate, computed
based on an exponentially-weighted moving average
of 100ms windows.

Minstrel makes use the multi-rate retry chain
(MRR), an array of bit rates and number of attempts
to make at each bit rate, that tells the card which
rates to try before reporting a failure. The retry chain
makes failures extremely unlikely and allows Minstrel
to choose fall-back rates when a packet does not suc-
ceed. When not sending a probe packet, Minstrel
sets the MRR to first try the rate with the highest
throughput, then the next-highest throughput, then
greatest probability of success, and finally attempts
to send a packet at the lowest base rate. In essence,
Minstrel tells the card to send at the highest through-
put rates but to fall back to reliable rates upon fail-
ure.

To keep an accurate estimate of throughput and
probability for each rate, Minstrel sends sample
frames ten percent of the time. However, Minstrel
tries to avoid sampling at a rate slower than the cur-
rent best rate. If the randomly chosen rate has a
higher lossless throughput than the current optimal
rate, the MRR first lists the sample rate, then the
highest-throughput rate, then the best-probability
rate, and finally the base rate. On the other hand, if

the random rate is slower than the optimal rate, the
sample rate is placed lower in the retry chain: first,
the best throughput rate is tried, and only if it fails
does the sample rate then get attempted (followed, as
usual, by the best probability rate and the base rate).
This ensures that Minstrel never samples rates worse
than the current optimal rate unless the optimal rate
experiences a failure. See Table 2 for an overview of
the retry chains used in Minstrel.

Minstrel implementation is based on SampleRate,
so it also has ApplyRate() and ProcessFeedback()

methods, as well as a UpdateStats() method that
runs every 100ms. UpdateStats() is home to some
of the key differences between Minstrel and SampleR-
ate. Instead of making decisions based on the average
transmission time, Minstrel uses throughput, com-
puted with

T =
p

tx time

where T is the throughput of some rate r, p is the
probability of successfully transmitting at r, and
tx time is the computed lossless transmission time
at rate r.

The probability p of a successful transmis-
sion is calculated from statistics collected by the
ProcessFeedback() method, and is done using an
exponential weighted moving average, or EWMA.
The EWMA creates a weighted average that weighs
recent data more heavily than old data, with the
weighting for old data decreasing exponentially. An
EWMA ensures that a sudden degradation in link
quality will create a rapid response in the probabili-
ties, making Minstrel perform better in dynamic envi-
ronments. Minstrel will waste less time sending pack-
ets at a rate that no longer works, as compared to a
simple sliding-window probability calculation.

4 Methodology

We collected traces about the success rates of each bit
rate through a modified Linux wireless driver; Min-
strel and SampleRate were then re-implemented in
Python and replayed on this collected data.

4.1 Motivation

Our initial plan was to use the algorithms as imple-
mented in the MadWifi drivers for the Atheros chip.
However, MadWifi is deprecated, and only runs on
very old network cards. In addition to the unavail-
ability of compatible hardware, MadWifi would not
be an accurate reflection of contemporary users. Both
ath5k and ath9k, which were created to replace Mad-
Wifi, did not port the old bit rate selection system

2



Try Normal Random (slower than best) Random (faster than best)
1 Best throughput Best throughput Random
2 Next best throughput Random Best throughput
3 Highest probability Highest probability Highest probability
4 Lowest rate Lowest rate Lowest rate

Table 2: Multi-rate retry chains for Minstrel

from MadWifi and instead opted to use the Linux
kernel’s rate selection framework, which only imple-
ments Minstrel. Porting SampleRate over to the new
drivers would not have been trivial, as there are vast
differences in the interfaces.

At this point, we decided to take a different ap-
proach and use an approach similar to that used in
Sprout [3]. We modified the ath9k driver to try bit
rates uniformly and report packet successes and fail-
ures, then analyze this data in user-space with re-
implementations of SampleRate and Minstrel. Not
only did this lessen the re-implementation cost (since
the algorithms were re-implemented in user-space in
Python, not in kernel-mode in C), but it also pro-
vided reproducibility and allowed us to investigate
modifications to SampleRate and to Minstrel.

4.2 Trace Collection

Traces were collected from an ath9k driver modified
to sample bit rates uniformly and to report successes
and failure from each packet. Each bit rate was sam-
pled uniformly in time — thus, more packets were
sent at higher bit rates, since those bit rates deliver
packets faster. For each packet sent, we recorded
the time it was sent, the bit rate it was sent at, and
whether or it it succeeded. The bit rate for the next
trace packet was chosen to be the bit rate that had
the smallest total transmission time so far. This guar-
antees approximately uniform selection of bit rates.
The wireless card used was an Qualcomm Atheros
AR9285 Wireless Network Adapter.

Traces were collected at an unused access point
in a basement of MIT. Before initiating trace collec-
tion, the wireless card was put in monitor mode for a
minute to check that no other users were connected to
the access point. None were, guaranteeing that traces
would not include delays from carrier sensing or run
into problems due to congestion at the access point.
Traffic was simulated by sending 1500 byte packets
to the access point’s IP address. Packets were sent
over UDP to avoid the TCP congestion window and
retry loop. Figure 1 shows a floor plan of the access
point and basement.

Eighteen total traces were collected, grouped into
a number of scenarios. Each trace was 30 seconds to

a minute long, and each scenario was repeated twice.
One scenario placed the wireless card with line of
sight to the access point, two meters from it. An-
other created solid body interference by having one
of the authors stand between the wireless device and
the access point. One placed the device around a cor-
ner from the access point, creating some potential for
multi-path interference and fading. In one scenario,
we moved the wireless device throughout the trace,
pacing back and forth in a 10 meter line in front of
the access point. Finally, one five-minute trace was
taken, which mixed the above scenarios, first moving
around a corner, then standing still, then moving to
line-of-sight with the access point. A few shorter (3
to 15 second long) traces were collected to investigate
the startup behavior of bit rate selection.

Figure 1: We collected most traces at a remote access
point in the basement of MIT’s Building 13.

4.3 Testing framework

Once collected, traces were fed to a bit rate selec-
tion simulator to analyze the performance of Min-
strel and SampleRate. harness.py interfaced with
the bit-rate selection algorithms using two functions:
ApplyRate() and ProcessFeedback(). ApplyRate

returns a multi-rate retry chain of rates to attempt
transmission at. The retry chain is one element
long for SampleRate, since it does not use MRR.
ProcessFeedback is a callback that is passed the suc-

3



cess or failure of the transmission and how many at-
tempts were made at each bit rate. This parallels
the interface used by the Linux kernel itself. For
every packet transmission, the simulator would call
ApplyRate; compute the probability of success based
on packets sent in 10-millisecond window around the
current time; and from that determine the success
or failure of the packet, and the number of retries it
required.

We implemented SampleRate as outlined in John
Bicket’s Master’s thesis [1]. This implementation is
slightly different from how it was implemented in
the MadWifi kernel driver. The primary difference
is that the kernel implementation uses a EWMA,
while the thesis implementation computes average
transmission times based on a 10-second sliding win-
dow. It would be worth looking at the performance of
EWMA-based SampleRate in the future. Our imple-
mentation, samplerate.py contains ApplyRate(),
ProcessFeedback() and RemoveStaleResults(), as
well as a few helper functions and data structures for
tracking rate statistics.

We implemented Minstrel by porting the C
code from the 3.3.8 version of the Linux kernel
into Python. minstrel.py contains ApplyRate(),
ProcessFeedback() and UpdateStats(), as well as
a few helper functions and data structures for track-
ing rate statistics.

To improve re-implementation fidelity, both imple-
mentations were meticulously checked by both au-
thors.

4.4 Experimental parameters

There are a few parameters that can be adjusted in
Minstrel and SampleRate, but our implementation is
consistent with what the respective authors originally
chose.

In SampleRate, the number of successive retries,
the frequency of probe packets, the window size, and
the lossless tx time estimations are all parameters
that can be changed. The SampleRate thesis chose
4 successive retries, a probe frequency of every ten
packets, and a window size of ten seconds. We used
the same values in our implementation. Additionally,
we use the same equation to calculate tx time.

In Minstrel, the frequency of probe packets, the
window size, and the EWMA weighting are the ad-
justable parameters. The 3.3.8 Linux kernel uses a
probe frequency of 10%, a window size of 100ms, and
a EWMA weighting of 0.75. We use the same values.
Additionally, Minstrel also estimates tx time using
the ieee80211_frame_duration() method from the
util.c file in net/mac80211. We implemented the

same function in Python.

5 Analysis

Minstrel and SampleRate perform similarly, usually
within 3 Mbps of each other. We were slightly sur-
prised to see how significantly SampleRate outper-
formed Minstrel in certain situations, though, with
throughput being up to 67% higher. However, in es-
pecially noisy situations, such as when the client is
moving or when the client is around the corner from
the access point, Minstrel consistently outperforms
SampleRate. Figure 2b shows the results of a sin-
gle run of both Minstrel and SampleRate over all the
different types of traces we collected. This is con-
sistent with the literature—the authors of Minstrel
noted that they focused on making Minstrel robust
to poor conditions [2], which means losing potential
throughput gains in stable situations. Conversely,
John Bicket noted that SampleRate performs better
in stable situations than noisy or highly varying con-
ditions [1].

In Figure 2a we show the performance of constant
bit rates on the clear 1.dat trace, which is a 35
second trace in clear view of the access point. The
optimal rate here was 18 Mbps, which achieved an av-
erage throughput of about 15 Mbps. The next highest
bit rate, 24 Mbps, shows a large plummet in perfor-
mance, down to a throughput of 1.17 Mbps. This
steep drop is characteristic, and is also talked about
in the SampleRate thesis [1]. It demonstrates just
how important bit rate selection is — the optimal bit
rate has typically much higher throughput than the
next-best rate, but if the algorithm strays too high
the results can be devastating.

Bit rate selection algorithms strive to have a
throughput near or greater than the optimal con-
stant rate. For this clear_1.dat trace, SampleRate
clearly meets this goal, achieving an average through-
put more than 1 Mbps higher than the optimal con-
stant rate. In noisier situations, though, Minstrel
tends to be closer to the optimal constant rate.

Bit rate selection algorithms naturally show vari-
ation between runs on the same data because probe
rates are chosen randomly. The variations were small,
though. On ten runs on the clear 1.dat trace, the
average of Minstrel over 10 runs was 7.52 Mbps, with
a maximum variation of +/- 0.12 Mbps. SampleR-
ate was similarly stable, it averaged 5.284 Mbps over
10 runs, with a maximum variation of about +/- 0.3
Mbps. The variation of results on other traces (ex-
cept for traces 5s or less) was similar.

The histograms of which rates the algorithms de-

4



(a) Throughput of using a constant 802.11b/g bit
rate in clear line-of-sight from the access point.

(b) Throughput of Minstrel and SampleRate in var-
ious scenarios.

Figure 2: Comparing Minstrel and Samplerate

cided to send at provided some useful insight into
their behavior. Table 3 is a histogram of a 35 second
corner trace. In this situation Minstrel outperforms
SampleRate. The constant rate throughputs demon-
strate that 11, 12 and 18 Mbps were the optimal rates
to send at, and that no packets were successful at any
higher rates. SampleRate does not use these rates
except for probe packets, which happens once every
ten seconds. Minstrel, since it does not terminate
transmission after four successive failures, spends a
lot of time sending probe packets at these high rates,
which are never successful. The only reason low rates
have fewer probe packets is because Minstrel explic-
itly places them second in the retry chain. Despite
the fact that SampleRate spends less time probing
high rates, it is less successful. This is because Min-
strel send the most packets at the three most success-
ful bit rates. SampleRate, however, spends too much
time sampling low bit rates. Additionally, it spends
a lot of time sending at 5.5 Mbps, which is not one
of the optimal rates. We suspect that this might be
because the equation SampleRate uses to estimate
average transmission time needs to be tweaked.

Our examination of the histograms showed us that
Minstrel spends a lot of time sampling at high rates.
In the specific case we examined, they were all probe
packets. But sometimes Minstrel would choose 54
Mbps as the rate with the best throughput, which
made little sense. A closer investigation revealed that
Minstrel would sometimes get lucky with a successful
probe at 54 Mbps. The probability of success would
be 1, so then 54 Mbps would be chosen as the rate
with the best throughput. This is unfortunate, but
the real harm comes in the next window: all non-
probe packets would now be sent at 54 Mbps, and

nearly all would fail. However, since these hundreds
of failed packets weight equally with the single suc-
cessful probe packet, Minstrel still considers 54 Mbps
the best rate. Thus the probability of success might
drop from 1 to about 0.70, which is still high enough
for the throughput equation to rank 54 Mbps highly.
Fundamentally, the problem is that the EWMA does
not account the second block having hundreds more
packets than the first, so the probabilities were not
declining fast enough after a large number of failures.

Additionally, Minstrel uses a complex method of
calculating when to send a sample packet that in-
volves a heuristic to make sure that 10% of pack-
ets were actually samples. This is because the MRR
places sample packets second in the retry chain when
the sample rate is slower than the rate with the best
throughput. So even if 10% of probes have a sample
rate in the retry chain, a sample rate is not actually
sent 10% of the time. We implemented this heuris-
tic and it tended to cause Minstrel to send too many
probe packets.

In the next section we will talk about Minproved,
an improved version of Minstrel where we attempt to
fix problems with EWMA and too-frequent probing.

6 Improvements to Minstrel

In Section 5, we noted that the EWMA used by Min-
strel causes problems when probe packets succeed. A
natural next step was to modify Minstrel to avoid
this problem, by weighing each 100ms block of statis-
tics in proportion to how many packets it contains.
To preserve the exponential weighing of statistics, we
chose to weigh each 100ms block based on the num-

5



ber of packets sent, compared to the those sent in the
average block. Parameters were chosen so that if all
blocks were of average size, our “balanced” EWMA
would behave identically to a normal EWMA.

To achieve, this weighing, we first recast the usual
EWMA algorithm. The usual algorithm computes

p← αp+ (1− α)
ni
di

),

where p is the probability, α is a weight factor equal
to 0.75 in Minstrel, and ni and di are the number
of successful and total packets in the 100ms window.
We next write this as

p←
βp+ ni

di

β + 1
,

where β = α/(1− α). We can now change the factor
in front of ni/di to account for the total number of
packets sent. In our case, we chose to compute

p←
βp+ wi

ni

di

β + wi
,

where the weight wi is di/(d/b), with d the total num-
ber of packets ever sent and b the total number of
100ms windows ever seen. Then d/b is the average
number of packets per window and di/(d/b) is the
ratio between the current window and the average
window. Note that if the current window is of av-
erage size, this is exactly equal to the usual EWMA
result. Finally, we can simplify the above equation to

Sp←
β d

bSp+ Sni

β d
b + di

,

where S is any constant. This equation is usable in
fixed-point arithmetic (where S is the scaling factor
for the fixed-point representation), making it suitable
for implementation in the Linux kernel (which avoids
floating point computations for portability reasons).
Because packets at high rates rarely succeed, the av-
erage window size is a few packets. The main qualita-
tive difference between our balanced EWMA and the
original Minstrel EWMA is that windows with many
more packets than the average for that bit-rate are
weighted extraordinarily heavily. This fact allows us
to avoid multiple failing 100ms windows.

We tested a modified Minstrel which used this more
balanced EWMA algorithm on the same traces as
Minstrel and SampleRate, and found a consistent im-
provement of approximately 1 Mbps over the normal
Minstrel algorithm.

As noted in Section 5, Minstrel sends sample pack-
ets too frequently. This is due to a flag the kernel

uses to track whether a probe bit rates was actually
sampled. Recall that if the sample rate is slower than
the current best rate, it is second in the retry chain,
so there is a good chance that the random rate will
never be used to send a packet. This system is used
as an attempt to make sure that 10% of the sent pack-
ets are actually probes, as opposed to simply having
10% of packets contain a random rate somewhere in
the retry chain. The flagging seems to misbehave,
causing the extremely aggressive probing we see in
some traces. For example, in one of the traces where
the client was around a corner from the access point,
Minstrel sent almost half of its packets at probe fre-
quencies. We modified Minstrel to be less aggressive
with probe packets. We eliminated the flagging sys-
tem, and instead simply put a random bit rate in
10% of packets. This lead to a very large throughput
improvement, bringing Minstrel to the same level of
performance as SampleRate, and greatly exceeding it
on noisy traces such as the cases where the client was
around a corner or moving. When this change was
paired with the balanced EWMA change, it consis-
tently outperformed both vanilla Minstrel and Sam-
pleRate.

Figure 3: Throughput of Minproved as compared to
SampleRate and vanilla Minstrel.

Overall, our improved Minstrel, which we call
Minproved, often out-performs Minstrel by multiple
Mbps and never doing any worse; and usually sur-
passing the best constant bit rate. In only one case
did SampleRate achieve higher throughput than Min-
proved, and in this case both surpassed the best con-
stant bit rate. In cases where Minstrel out-performed
SampleRate, the same behavior was true of Min-
proved. In most cases, Minproved was 30% faster
than Minstrel, and in some the improvement as great
as 60%.

6



Maximum Throughput SampleRate Minstrel Minproved Static Throughput
1 Mbps 631 pkts 39 pkts 29 pkts 0.639 Mbps
2 Mbps 863 pkts 82 pkts 20 pkts 1.425 Mbps

5.5 Mbps 4814 pkts 110 pkts 805 pkts 4.406 Mbps
6 Mbps 423 pkts 137 pkts 276 pkts 4.603 Mbps
9 Mbps 553 pkts 327 pkts 57 pkts 4.630 Mbps

11 Mbps 3326 pkts 4121 pkts 3356 pkts 9.627 Mbps
12 Mbps 4649 pkts 9515 pkts 14285 pkts 9.444 Mbps
18 Mbps 1154 pkts 13295 pkts 15795 pkts 8.458 Mbps
24 Mbps 16 pkts 6909 pkts 1918 pkts 0 Mbps
36 Mbps 16 pkts 6944 pkts 2030 pkts 0 Mbps
48 Mbps 16 pkts 6888 pkts 2009 pkts 0 Mbps
54 Mbps 16 pkts 7308 pkts 1953 pkts 0 Mbps

Avg. Throughput: 5.42 Mbps 7.578 Mbps 11.107 Mbps

Table 3: Histograms of the number of packets sent at each rate. The trace was corner 1.dat and was
recorded around the corner from the access point. The best fixed rate for this trace was 11 Mbps, which
achieved a throughput of 9.627 Mbps. Minproved achieves a higher throughput than the best fixed rate.

However, Minproved still makes many poor
choices. While a single successful probe packet does
not cause many hundreds of milliseconds of failed
packets, as it does in Minstrel, the single successful
packet can still cause one window’s worth of failed
packets. Instead, it would be best if a success-
ful probe packet at a rarely-successful bit rate was
treated more carefully. One can imagine an algo-
rithm, for example, which would treat a single suc-
cessful probe packet as a reason to send a dozen more
probe packets at that bit rate, but does not yet com-
mit to sending hundreds of packets at that bit rate.

However, these are only vague ideas, and we have
no concrete implementations of such an algorithm.

7 Availability

All of our code and collected trace data are available
on GitHub:
https://github.com/pavpanchekha/6.829-project/

tree/3.8.6

This repository contains the modified ath9k driver
used to collect the traces, the traces we collected, as
well as the Python simulation framework.

8 Future Work

Very little analysis has been done of the perfor-
mance of bit rate selection algorithms on 802.11n net-
works. 802.11n introduces many new rates, as well as
multiple-input/multiple output (MIMO) capabilities.
There is an 802.11n version of Minstrel, but there is
no similar implementation of SampleRate.

We implemented SampleRate as outlined in the
thesis, but the MadWifi implementation has a few
key differences from the thesis. MadWifi use of
an EWMA instead of a window has more accurate
rate statistics, which will potentially lead to better
throughput. We did not have the time to implement
this alternative version, but it is worth further exam-
ination.

Hari Balakrishnan suggested that we use 802.11
broadcasts to collect our traces, instead of link layer
acknowledgments. We would have multiple comput-
ers listening at the broadcast address, and recording
all received packets. If packets were sent over UDP,
each computer’s record of which packets it received
would allow us to compute the success probability for
each packet for each rate. This approach would free
us from certain idiosyncrasies of reading data from
the driver, and lead to possibly more accurate traces,
as well as the ability to test multiple scenarios at once.
We were unable to implement this due to a lack of
time and inability to acquire compatible hardware.

Finally, we are considering submitting our improve-
ments to the Minstrel algorithm, namely the balanced
EWMA, as a kernel patch. Currently our changes im-
plemented in Python, so we would have to port our
improvements to C.

9 Conclusion

Minstrel and SampleRate perform similarly. The re-
sults suggest that SampleRate tends to perform bet-
ter, except in very lossy links such as the client being
far away from the AP or actively moving. Minproved,
our improved version of Minstrel, solidly outperforms

7

https://github.com/pavpanchekha/6.829-project/tree/3.8.6
https://github.com/pavpanchekha/6.829-project/tree/3.8.6


both Minstrel and SampleRate.
It seems that the replacement of SampleRate in the

Linux kernel may have been hasty, since it performs
similarly to Minstrel in many situations and in most
situations and is a much simpler algorithm, and thus
easier to adapt to changing wireless standards. We
are not sure if adjustments to SampleRate can bring
its performance to match that of Minproved, however.

Acknowledgments

We would like to thank Jonathan Perry and Hari Bal-
akrishnan for their valuable guidance, as well as
Derek Smithies for answering our questions about
Minstrel.

References

[1] Bicket, J. Bit-rate selection in wireless net-
works. Master’s thesis, MIT, 2005.

[2] Smithies, D. Minstrel rate control algorithm for
mac80211.

[3] Winstein, K., Sivaraman, A., and Balakr-
ishnan, H. Stochastic forecasts achieve high
throughput and low delay over cellular networks.
In Proceedings of the Tenth USENIX Symposium
on Networked Systems Design and Implementa-
tion (NSDI 2013) (Lombard, Ill, April 2013).

8


	Introduction
	SampleRate
	Minstrel
	Methodology
	Motivation
	Trace Collection
	Testing framework
	Experimental parameters

	Analysis
	Improvements to Minstrel
	Availability
	Future Work
	Conclusion

