PTFS: A Provenance-Tracking File System

6.033 Design Project |
Colleen Josephson
cjoseph@mit.edu
Shavit (2pm)
3/19/2012

mailto:cjoseph@mit.edu

1. Introduction

PTFS is a file system that tracks provenance, so users can trace the lineage of any file or file part.
Each file has a hierarchy of parts associated with it. For example, a PowerPoint file contains
sides, and a slide contains text and image boxes. Every part can be queried to find its parents and
children.

Provenance data is stored on-disk in a kernel-level database, and propagated by reference. Only
immediate ancestors and children are tracked. The Unix file system API have been modified and
extended to properly manage provenance. The signatures of existing API procedures have not
been modified, which ensures that the file system is compatible with provenance-unaware
applications, such as cp, mv, rm or make. Provenance-aware applications can use the API to track
provenance at a finer granularity. Files imported from outside the machine start out with no
provenance information.

The goals of this design are to provide fast searches and minimize overhead, while retaining
simplicity.

2. Design
2.1 Description

The system keeps all provenance information on-disk in a simple relational database that operates
at the kernel level to prevent cross-domain costs [1]. PTFS is pseudo-versioning: only one version
of a file part exists, but there can be multiple versions of its provenance data. Versioning prevents
cycles [1], allowing the provenance data to be represented abstractly as a DAG (directed acyclic
graph). A garbage collector runs in the background pruning provenance entries that are no longer
of use (see Section 2.3).

Provenance data also has an intermediate representation in-memory called a temp_prov list that
can be finalized to disk. This allows complex operations to be performed without invalidating the
database (Section 2.2.2).

2.2 Representation
2.2.1 On-Disk

Each version of a part has a unique partlD. The main provenance table, pictured in Figure 1,
contains detailed provenance data for each partlD. Each partID has a 64-byte freeform text
partType field. Applications define their own part types. A basic file is indicated by partType of
null. The sub-part field lists all sub-parts associated with a particular part. A basic file has no sub-
parts. A user friendly description of a part is stored in the Description field. A basic file is
described by its full pathname. Applications have their conventions for describing a particular
part. For example, a slide on a PowerPoint may be described as “Slide 1 in awesome.ppt”.

Provenance-aware applications are responsible for maintaining provenance of sub-parts, since it is
not reasonable to expect the file system to know the part hierarchy associated with every possible

1

type of file. This also means that the application is responsible for adopting a versioning policy
that will not introduce cycles.

To find out what partID is associated with a particular inode, the PTFS also provides a lookup
table in the database that maps inode numbers to the latest-versioned partlDs (see Fig. 2). Both
tables are hashed for rapid lookup.

partlD | partType | Date Description Comment Parents | Children | Subparts | Stale | Deleted

1234 null 3/12/12 | /home/cjoseph/ Null [222] [82,7,4] | []

15:47:22 | index.html

222 null 3/10/12 | /home/cjoseph/ From [1 [1234] [1

0:12:45 | template/index.html | www.css.com

Figure 1: Database schema for provenance table. partID is a 64-bit unsigned integer, partType is a 64-byte freeform
text field, Date is 4-byte timestamp, Description and Comment are an unlimited text fields, Parents, Children and
Subparts are unlimited lists of 64-bit partIDs, and the Stale and Deleted flags are 1 bit each.

Inode Number partiD
1111 1234

Figure 2: Database schema for inode-to-partID lookup table. An inode number is a 32-bit number, and the partID is a
64-bit unsigned integer. Only the most recent partID associated with an inode is listed.

2.2.2 In-Memory

An intermediate representation of the provenance data is kept in memory, called a temp_prov
struct:

struct temp_prov{
int proviD;
struct action ** actions;

}

The WRITE_PROV system call takes in a pointer to a temp_prov struct, then parses actions**
into a single database operation on partlD (if partID does not exist, it is created). The actions**
array contains a set of action structs that indicate an operation to be performed on a particular
column of a row:

struct actions{
int type; //set, append or remove
char * field; //the field to act upon
int type; //the data type of the field
void * data;

}

If an action is not given for a particular column, then that column is left unmodified.

http://www.css.com/

A list of temp_prov structs is kept in memory, one for every partlD to be modified. Provenance-
aware applications maintain their own temp_prov data. WRITE is responsible for maintaining the
temp_prov data for provenance-unaware applications.

2.3 Versioning

Versioning makes the DAG much easier to maintain since it prevents cycles [1] and makes the
graph easier to maintain. For example, if a user copies file A to file B to file C, and then edits file
B, we can keep the stale version of B’s provenance data to provide a link between A and C,
without requiring expensive tree surgery operations. An entry is stale if it does not describe the
current version of a file.

The stale flag should make it obvious to the user that the link between A and C comes from a
prior revision of the file, so the current version of B cannot be guaranteed to bear any similarity
whatsoever to A or C. However, information about a past relationship could be very valuable—if
a minor edit was performed on B, it would still share a lot of content with A and C.

When a stale entry becomes childless, it is removed from the database and its partID is recycled.
DELETE_PROV checks for stale ancestors each time it is called (see Section 2.4.1).

2.4 API
PTFS implements the following system calls:

e OPEN(name, flags, mode): Opens an existing file name or creates a new one.
e READ(filelD, buf, n): Read data from filelD, as implemented in the Unix file system.

e SET PAWARE(fd, pointer): Marks the file as provenance-aware in the kernel’s file
table, and sets where the kernel can look to find the temp_prov data.

e WRITE(filelD, buf, n): Writes to the file associated with fileID and maintains the
temp_prov table in memory if fileID is not marked as provenance-aware in the kernel’s
file table. See 2.4.1 for more details.

e CLOSE(fd): Close the file descriptor, write temp_prov to disk. See 2.4.1 for more details.

e UNLINK(name): Removes name from directory and the provenance Description field,
and decrement reference counter. If the number of references is zero, delete the file call
DELETE_PROV. See 2.4.1 for more details.

e GET _PARTID(inode_num): Retrieve the latest-versioned provenance ID associated
with inode_num.

e RES PARTID(): Reserves a valid unused provenance ID. A bit vector is used to keep
track of free IDs, analogous to the way the UNIX file system tracks free inodes.

e READ_PROV(partID, buf): Retrieve the provenance data for partlD from the database,
package into a struct, and write it to buf.

e (Kernel Only) DELETE_PROV(partID): If partlD has no children, provenance data
(including references from parents and subparts) associated with partID is deleted.
Otherwise, the deleted flag is turned on for partID and all of its subparts, but the entries
are not actually deleted until they have no children. See 2.4.1 for more details.

e (Kernel Only) WRITE_PROV/(pointer): Parses the temp_prov structure located at
pointer and parses it into a database operation Modifies the provenance of proviD’s
parents to add partID as a child. Returns -1 if there is an error.

2.4.1 Implementation Details

The implementations of WRITE, CLOSE, UNLINK, DELETE_PROV and WRITE_PROV
are particularly important for ensuring that PTFS is compatible with provenance-unaware
applications such as cp, rm, and mv.

WRITE:
o Checks the provenance-awareness flag of the file we are writing to. If the application is
provenance aware, then the data is simply written to disk.
o Otherwise, calls RES_PROV, add a temp_prov with the new partID for the working file.
(This step is only performed once before a file is closed).
o Look at process’ open files (minus stdin, stdout and stderr). For each file:
o Mark the open file as a parent in the working file’s temp_prov
o Copy all partIDs from open file’s the Subparts attribute into memory. Use that data
to create new temp_prov structs marking the original subpart as the parent. Finally,
the working file’s temp_prov needs all the newly created subparts added to the
Subparts attribute.
e Write the data to disk.

In the provenance-unaware case, since it is possible for a process to read data from a file, then
discard it, false-positives can occur. Additionally, because a new partID is always requested for
the working file, modifying an existing file automatically creates a new provenance version.
Unfortunately, we have not discovered a way to mark previous version as the parent of a new
version.

CLOSE acquires a lock on the database, then executes WRITE_PROV on every element in the
list of temp_prov structs. Locking the entire database is an expensive but necessary measure to
ensure that the on-disk provenance data is never in an invalid state. For example, if a user were to
copy file A to file B, and then start copying file A to file C before file B was completed, file A’s
provenance entry could refer to children that have not yet been added to the database.

UNLINK decrements a reference counter in the file’s inode. If the counter reaches zero, the inode
is freed for use and DELETE_PROV is called on the main file’s most recent provenance entry.

DELETE_PROV:
e Checks if partID or any of its subparts have children

o If not, partlD and all of its subparts are recursively deleted from the database,

freeing their partIDs for future use.
= Whenever a part is deleted, its parents are examined as well. If a parent is
stale or flagged for deletion and Children = [], it is deleted.

o Otherwise, partID and all of its subparts are flagged for deletion by turning the

Delete bit for the provenance entry to 1.

Because provenance on the file level is associated with a particular inode, mv has no effect on the
provenance other than changing the description while linking and unlinking the inode to
pathnames. rm simply runs UNLINK, which uses DELETE_PROV to manage the deletion of
provenance data appropriately. A detailed analysis of cp is carried out in Section 3.1.3.

Finally, it is worth noting that WRITE_PROV return as failed if an action struct has
field="Children”. Modifying the Children field is an invalid operation because WRITE_PROV is
responsible for maintaining children. If WRITE_PROV did not manage this, then applications
would have to write temp_prov structs for the parent proviDs. In addition to making things more
complicated for the programmer, this policy would also blur abstraction barriers by requiring a
process to modify provenance for parts it does not own.

3. Analysis

3.1 Usage
3.1.1 PowerPoint Slide Copying

When the PowerPoint application first opens a .ppt file, it calls SET_PAWARE. This disables
WRITE’s automated creation of temp_prov structs, thus allowing the PowerPoint application to
maintain its own temp_prov structs.

It is suggested that developers provide an application-specific way to look up the provenance of a
file. For example, a user could right click on a slide and select “Get Provenance” to pull up a
dialog that executes a search.

3.1.2 Compiling Software

A provenance-unaware compiler records every file open during WRITE as parents of the
resulting binary, which should include all of the source files.

3.1.3 Copying Files

Copying file A to file B can be summarized as: OPEN A, OPEN B, READ block from A, WRITE
block to B, CLOSE A, CLOSE B.

Every time WRITE is called, it records a process’ open file descriptors as parents to the file in
temp_prov. If a parent file has sub-parts, new subparts are created and added to the working file,

and linked to the parent subparts. This ensures that provenance information about sub-parts is not
lost.

When CLOSE is called, it makes calls to WRITE_PROV to write the temp_prov structs to the
database. WRITE_PROV also automatically maintains the parent-child duality by checking to
make sure that each parent of a child contains information about the child in its Children field.

3.1.4 Zip Files

Tar performs file concatenation. WRITE ensures proper provenance of the resulting output file,
since the zip program reads data from all of the files it needs to compress. Since provenance is
stored separately from the physical files, the zip application must include provenance information
in the zip file itself. One possibility would be recording provenance information in the zip file’s
header, and then re-instating the provenance data when the files are unzipped. The zip program
should also prune out references to file parts not included in the .zip itself.

3.2 Performance

3.2.1 Space

Assuming that each file typically has no more than 5 ancestors, 5 children and 20 subparts, the
average provenance entry is:

partID = 8 byte

partname = 64 bytes
children = 5*8 = 40 bytes
parents = 5*8 = 40 bytes
description = ~256 bytes
subparts = 20*8 = 160 bytes

A per-entry estimate is 568 bytes = 0.5kB.

Assuming that each file has, on average, 3 versions of provenance data active in the database, a
file system with 1 million files has approximately 150 million parts. The total space taken up by
provenance data is 9GB. For a 500GB hard drive, this is a total overhead of 1.8%.

Each partID is 64 bits, yielding 10*° possible part names, providing a namespace much larger than
the number of parts likely to be present in a modern system.

3.2.2 Time

Reading a single provenance entry from the database is an O(1) operation, since it is essentially a
hash table lookup. Writing a single provenance entry to disk is also a constant-time operation.
Querying the entire ancestry of a particular partiD, therefore, is proportional to the number of
ancestors in the graph.

Because the each provenance entry tracks both parents and children, looking up which parts
depend on a particular file can be done by merely reading the provenance entry from the database,
an O(1) operation. Provenance of multiple levels of descendants, just as with ancestors, grows
linearly with the number of descendant nodes.

We analyze the performance of continuous file copying using the 1/0O assumptions in Tables 1 and
2.

Table 1: Latency Assumptions

Operation Time
1 DRAM Load 0.0001 msec
Random Disk I/0 | 10 ms

Table 2: Throughput Assumptions

Operation Rate
DRAM Access 10,000 MB/s
Sequential Disk Access 100 MB/s
Random Disk Access 1 MB/s

We assume that the average user has 100,000 files in their file system, and each file is
approximately 2MB. For a standard file system, copying a 2MB file takes 10ms to seek the source
file, 2MB)/(100MB/s) = 20ms to sequentially read the data, 10ms to seek the destination, and
another 20ms to sequentially write, totaling 60ms per file. This is a file transfer rate of about 16
files per second.

A provenance file system has some additional overhead because of the required provenance
maintenance. Using the assumption from Section 3.2.1, we assume that each file has about 20
sub-parts. Each 0.5kB subpart needs to be read from the database once, and written twice. This is
quite expensive, since it is random disk access. However, it may be possible to speed things up
greatly by keeping parts of the database in memory.

An average file system has 100,000 files, and if the files are 20 parts each (with 3 versions per
part), this would yield a database of ~400MB. At this size, it is possible to cache the entire
database in memory, occasionally writing to disk for posterity. Thus, each read and write of
provenance data would take 0.0001ms of latency plus (0.5kB)/(100,000MB/s) totals 100.61 ns.

Thus, the overhead per file would be 20*3*100.61ns = 0.006ms.

For a system whose provenance is small enough to be stored in memory, a time overhead of
0.01% is incurred. The file transfer rate will still be over 16 files per second.

4. Conclusion

This design stores provenance information persistently, while keeping overhead low because only
immediate ancestors are tracked. The use of database software allows for compact storage and
rapid indexing. Furthermore, bi-directional references makes finding children fast.

Problems that remain to be solved include eliminating false positives on provenance in
provenance-unaware applications, and discovering a way to mark old provenance data as the
parent of a new version when editing provenance-unaware files.

Acknowledgments

I want to thank Kyle Miller for suggesting the idea of structs as an intermediate provenance
representation, and Kiran Bhattaram for proofreading.

Word Count: 2677 (excludes header text, internal diagram text, acknowledgments and references)

References

[1] M. Seltzer et al., “Provenance Aware Storage Systems,” Harvard University Computer
Science Technical Report TR-18-05

